A Generalization of Conditional Entropy
نویسندگان
چکیده
We introduce an extension of the notion of Shannon conditional entropy to a more general form of conditional entropy that captures both the conditional Shannon entropy and a similar notion related to the Gini index. The proposed family of conditional entropies generates a collection of metrics over the set of partitions of finite sets, which can be used to construct decision trees. Experimental results suggest that by varying the parameter that defines the entropy it is possible to obtain smaller decision trees for certain databases without sacrificing accurracy. RÉSUMÉ. Nous présentons une extension de la notion de l’entropie conditionnelle de Shannon à une forme plus générale d’entropie conditionnelle qui formalise l’entropie conditionnelle de Shannon et une notion semblable liée à l’index de Gini. La famille proposée des entropies conditionnelles produit d’une collection de métriques sur l’ensemble de partitions des ensembles finis, qui peuvent être employées pour construire des arbres de décision. Les résultats expérimentaux suggèrent qu’en changeant le paramètre qui définit l’entropie il soit possible d’obtenir de plus petits arbres de décision pour certaines bases de données sans sacrifier l’exactitude de la classification.
منابع مشابه
A Preferred Definition of Conditional Rényi Entropy
The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...
متن کاملTsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions
The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...
متن کاملRandomness extraction via a quantum generalization of the conditional collision entropy
Randomness extraction against side information is the art of distilling from a given source a key which is almost uniform conditioned on the side information. This paper provides randomness extraction against quantum side information whose extractable key length is given by a quantum generalization of the conditional collision entropy defined without the conventional smoothing. Based on the fac...
متن کاملA duality relation connecting different quantum generalizations of the conditional Rényi entropy
Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. This generalizes the well-known duality relation...
متن کاملStefan Berens Conditional Rényi entropy
The introduction of the Rényi entropy allowed a generalization of the Shannon entropy and unified its notion with that of other entropies. However, so far there is no generally accepted conditional version of the Rényi entropy corresponding to the one of the Shannon entropy. Different definitions proposed so far in the literature lacked central and natural properties one way or another. In this...
متن کامل