A Generalization of Conditional Entropy

نویسندگان

  • Dan A. Simovici
  • Szymon Jaroszewicz
چکیده

We introduce an extension of the notion of Shannon conditional entropy to a more general form of conditional entropy that captures both the conditional Shannon entropy and a similar notion related to the Gini index. The proposed family of conditional entropies generates a collection of metrics over the set of partitions of finite sets, which can be used to construct decision trees. Experimental results suggest that by varying the parameter that defines the entropy it is possible to obtain smaller decision trees for certain databases without sacrificing accurracy. RÉSUMÉ. Nous présentons une extension de la notion de l’entropie conditionnelle de Shannon à une forme plus générale d’entropie conditionnelle qui formalise l’entropie conditionnelle de Shannon et une notion semblable liée à l’index de Gini. La famille proposée des entropies conditionnelles produit d’une collection de métriques sur l’ensemble de partitions des ensembles finis, qui peuvent être employées pour construire des arbres de décision. Les résultats expérimentaux suggèrent qu’en changeant le paramètre qui définit l’entropie il soit possible d’obtenir de plus petits arbres de décision pour certaines bases de données sans sacrifier l’exactitude de la classification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Preferred Definition of Conditional Rényi Entropy

The Rényi entropy is a generalization of Shannon entropy to a one-parameter family of entropies. Tsallis entropy too is a generalization of Shannon entropy. The measure for Tsallis entropy is non-logarithmic. After the introduction of Shannon entropy , the conditional Shannon entropy was derived and its properties became known. Also, for Tsallis entropy, the conditional entropy was introduced a...

متن کامل

Tsallis Entropy and Conditional Tsallis Entropy of Fuzzy Partitions

The purpose of this study is to define the concepts of Tsallis entropy and conditional Tsallis entropy of fuzzy partitions and to obtain some results concerning this kind entropy. We show that the Tsallis entropy of fuzzy partitions has the subadditivity and concavity properties. We study this information measure under the refinement and zero mode subset relations. We check the chain rules for ...

متن کامل

Randomness extraction via a quantum generalization of the conditional collision entropy

Randomness extraction against side information is the art of distilling from a given source a key which is almost uniform conditioned on the side information. This paper provides randomness extraction against quantum side information whose extractable key length is given by a quantum generalization of the conditional collision entropy defined without the conventional smoothing. Based on the fac...

متن کامل

A duality relation connecting different quantum generalizations of the conditional Rényi entropy

Recently a new quantum generalization of the Rényi divergence and the corresponding conditional Rényi entropies was proposed. Here we report on a surprising relation between conditional Rényi entropies based on this new generalization and conditional Rényi entropies based on the quantum relative Rényi entropy that was used in previous literature. This generalizes the well-known duality relation...

متن کامل

Stefan Berens Conditional Rényi entropy

The introduction of the Rényi entropy allowed a generalization of the Shannon entropy and unified its notion with that of other entropies. However, so far there is no generally accepted conditional version of the Rényi entropy corresponding to the one of the Shannon entropy. Different definitions proposed so far in the literature lacked central and natural properties one way or another. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003